259 research outputs found

    Connexin-dependent neuroglial networking as a new therapeutic target

    Get PDF
    Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders

    The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes

    Get PDF
    In the brain, astrocytes represent the cellular population that expresses the highest amount of connexins (Cxs). This family of membrane proteins is the molecular constituent of gap junction channels and hemichannels that provide pathways for direct cytoplasm-to-cytoplasm and inside-out exchange, respectively. Both types of Cx channels are permeable to ions and small signaling molecules allowing astrocytes to establish dynamic interactions with neurons. So far, most pharmacological approaches currently available do not distinguish between these two channel functions, stressing the need to develop new specific molecular tools. In astrocytes two major Cxs are expressed, Cx43 and Cx30, and there is now evidence indicating that at least Cx43 operates as a gap junction channel as well as a hemichannel in these cells. Based on studies in primary cultures as well as in acute hippocampal slices, we report here that Gap 19, a nonapeptide derived from the cytoplasmic loop of Cx43, inhibits astroglial Cx43 hemichannels in a dose-dependent manner, without affecting gap junction channels. This peptide, which not only selectively inhibits hemichannels but is also specific for Cx43, can be delivered in vivo in mice as TAT-Gap19, and displays penetration into the brain parenchyma. As a result, Gap 19 combined with other tools opens up new avenues to decipher the role of Cx43 hemichannels in interactions between astrocytes and neurons in physiological as well as pathological situations

    Glial connexin expression and function in the context of Alzheimer's disease

    Get PDF
    AbstractA hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics

    Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity

    Get PDF
    The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR(Cx30CreERT2) mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR(Cx30CreERT2) mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-alpha and Il-1 beta as well as TNF-alpha protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+. The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GR(Cx30CreERT2) mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of postmortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology

    HIF-1 and c-Src Mediate Increased Glucose Uptake Induced by Endothelin-1 and Connexin43 in Astrocytes

    Get PDF
    In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism

    Hierarchically coupled ultradian oscillators generating robust circadian rhythms

    Get PDF
    Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase

    Disentangling astroglial physiology with a realistic cell model in silico

    Get PDF
    Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging

    Synthesis of YVO4:Eu3+/YBO3Heteronanostructures with Enhanced Photoluminescence Properties

    Get PDF
    Novel YVO4:Eu3+/YBO3core/shell heteronanostructures with different shell ratios (SRs) were successfully prepared by a facile two-step method. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the heteronanostructures. Photoluminescence (PL) study reveals that PL efficiency of the YVO4:Eu3+nanocrystals (cores) can be improved by the growth of YBO3nanocoatings onto the cores to form the YVO4:Eu3+/YBO3core/shell heteronanostructures. Furthermore, shell ratio plays a critical role in their PL efficiency. The heteronanostructures (SR = 1/7) exhibit the highest PL efficiency; its PL intensity of the5D0–7F2emission at 620 nm is 27% higher than that of the YVO4:Eu3+nanocrystals under the same conditions
    corecore